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A Stable and Efficient Admittance Method Via
Adjacence Graphs and Recursive Thresholding

Luciano Tarricone and Mauro Mongiardo

Abstract—The generalized admittance method is a rigorous
full-wave approach for the analysis of waveguide circuits. Unfor-
tunately, it may present the risk of ill conditioning, especially when
very complex structures are analyzed with a considerably high
number of modes. In this paper, the concepts of adjacence graph
and recursive thresholding are proposed to solve its numerical
problems. By applying the proposed strategy, the linear system
representing the core of the analysis is partitioned into many
independent and well-conditioned subsystems, thus improving
the numerical stability of the approach and its efficiency. The
attractive features of the proposed approach are its simplicity
and immediate implementation. Results are given, referred to a
real industrial case, a complexE H-plane filter, whose analysis
could not be performed via a standard admittance method
when a very high number of modes were considered. With the
present approach, the ill conditioning is avoided and considerable
enhancements in computing times is achieved.

Index Terms—Adjacence graphs, generalized admittance
method, recursive thresholding, sparse matrices.

I. INTRODUCTION

T HE complexity of microwave (MW) waveguiding circuits
and components is continually increasing. This is due

partly to the technological evolution and partly to the rapid
progress in computer-aided design (CAD) and computer ma-
chines, which allows the analysis of quite complex structures.
As a consequence, the development of numerical methods,
efficient and accurate, for the analysis of MW circuits, is
becoming crucial. Several approaches have been proposed in
the literature for a full-wave rigorous solution of the problem.
Among them, the mode-matching (MM) approach is extremely
attractive and probably the most used for this class of problems
for its high efficiency and accuracy. Thus far, many different
formulations of this approach have been presented [1]–[3]: they
are all accurate and more or less performed depending on the
characteristics of the problem.

More recently, a new formulation has been proposed based
on the use of the generalized admittance matrix (GAM) method
[4]–[7], which considers a MW circuit as composed of par-
allel-epipedal elementary cells connected one another. The prin-
ciple is a “divide and conquer” strategy, in accordance with a
common trend in the analysis of very complex circuits, based
on a problem segmentation into subdomains [8], [9], possibly
analyzed with different methods [10], [11]. This methodology
is also open to an efficient and smooth migration toward par-
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allel or distributed environments, which is often the only way
to solve very large and complex circuits in an affordable time
given the constraints of industrial design [12].

It has been shown [13] that one of the most noticeable advan-
tages of the admittance method is that it allows to use the adjoint
network formulation [14] for optimization problems. This re-
sults in the generation of a relatively “large” matrix, which con-
tains all the relevant information. An open problem in the use of
the GAM formulation in industrial software tools for MW engi-
neering is the existence of risks of numerical ill conditioning in
the solution of a large linear system representing the core of the
approach. In fact, for computation accuracy purposes, a large
number of localized modes are often considered at each discon-
tinuity, thus resulting in the GAM ill conditioning.

Unfortunately, the elimination of higher order modes corre-
sponds to a rather costly (in terms of efficiency) operation since
it requires terminating all the considered higher order modes
with their characteristic impedance. In this paper, it is shown
that, with the use of the adjacence graph (AG) and recursive
thresholding (RT), the latter operation can be avoided and
the global linear system can be partitioned into independent
well-conditioned subsystems. This way, the complexity of
the problem is reduced, with a consequent improvement in
computing times.

The paper is structured as follows. In Section II, the GAM for-
mulation and its numerical properties are briefly resumed and, in
Section III, the AG–RT strategy is proposed to solve its numer-
ical problems. In Section IV, results are given for a real complex
industrial case. Finally, conclusions are drawn.

II. GAM FORMULATION

The method has been described in several publications
[4]–[7] and the reader is referred there for details. The GAM
formulation is based on the partitioning of a metallic waveguide
complex structure into simple volume elements, to be analyzed
independently.

The numerical description of the single cell is given in terms
of an admittance-type matrix so that the problem of the inter-
connection among blocks can be handled in merely circuital
terms, by imposing to the equivalent voltages and currents of
each cell’s ports the constraints arising from the overall circuit
topology. The analysis of a complex structure is, therefore, re-
duced to that of the overall equivalent network resulting from
the interconnection of its constituent elements [15].

A. GAM of a Resonant Cavity

The single-cell analysis, leading to its-matrix characteri-
zation, can be performed in a general fashion, by regarding the
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cell, whatever its shape, as a metallic resonator (sourceless in-
side) having on its surfacean arbitrary number of apertures

, where we suppose an electric field to be impressed.
The knowledge of the tangential components of on the

apertures, together with that of the tangential component of
on the rest of (i.e., on the metallic enclosure, where such a
component vanishes), uniquely determines the field inside the
cavity. The resulting expression for the magnetic field is

(1)

In (1) , indicates the observation point, is the source point
(i.e., any point of ), the quantity ( being
the inward normal to ) may be seen as an impressed surface
magnetic equivalent current density, is the electric field im-
pressed on the-th aperture, and is the dyadic mag-
netic Green’s function, a solution of the equation

(2)

(where , is the unit dyadic and is the
Dirac function), with the boundary condition

on

meaning the vanishing of the electric-field tangential compo-
nent on the whole enclosure in presence of a pulse source.

For the sake of simplicity, we rewrite (1) as

(3)

by letting

be theadmittance dyadic Green’s function.
The relationship among the electric and magnetic fields at

the apertures (respectively, excitation and test quantities in the
GAM formulation) can be expressed in terms of an admittance
matrix, by expanding the fields at the apertures into a suitable
set of ortonormal eigenfunctions as

(4)

where the series are to be truncated to the firstand terms,
respectively, for numerical computing.

In (4), the double indexes and take into account the
bidimensional extension of the apertures, whileand refer to
the aperture being examined. The and represent, re-
spectively, the equivalent voltages and currents at theth and

th ports.
If we now substitute in the first member of (3) the expression

in (4) for and in its second member the expression in (4)

for and we test the resulting relationship with the general
eigenfunction, we obtain

(5)

where

(6)

defines the GAM of the cavity, which is a square matrix of di-
mension ( being the number of modes retained to
represent the field on theth aperture).

The element represents the intensity of the th
equivalent current component induced on theth aperture (the
test one) by the th equivalent voltage component impressed
on the th aperture (the excitation one).

At this point of the analysis, we can simply regard the cell
as an electric network, having a number of ports equal to the
number of modes retained in the aperture field expansions. An
example of the dyadic Green’s function expression
for a rectangular resonator can be found in [7] where, for brevity,
the reader is referred.

B. Numerical Characteristics of the GAM Formulation

As is quite well known [9], [16], many frequency-domain
numerical methods for MW circuit analysis and the GAM ap-
proach makes no exception, and have their bottleneck in the so-
lution of a linear system, which, in the GAM case, assumes the
form

(7)

is the vector of unknown voltages inside the circuit and at its
output ports, while is the vector of excited currents inside the
circuit and over its output ports. The system size can easily reach
large dimensions and the system (7) must be solved for each
spot frequency. Last but not least, when very large and complex
problems are attacked, the condition number of the system can
result in a critical value, thus leading the approach to a failure or
to large number of iterations when iterative sparse solvers can
be used because of the matrix sparsity.

Consequently, it can be stated that the current GAM formu-
lation has two main directions of improvements: avoid risks of

ill conditioning and reduce solution times for system (7)
Both goals are achieved jointly in this paper and the strategy

to pursue them is now described. For the sake of clearness, we
first describe the proposed AG–RT strategy on simple and aca-
demic examples and then discuss the whole methodology by
referring to a real industrial case, i.e., the analysis of a complex

-plane filter.

III. SYSTEM SEGMENTATION USING AG–RT

A. Background

The idea of enhancing the efficiency of the solution of
electromagnetic problems by focusing on the solution of linear
systems is quite common. A number of techniques have been
proposed for many different problems and, among them, a
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large class is basically inspired by the principle of reducing the
order of the problem, by decomposing the system matrix into
suitable fragments, or the solution space into smaller subspaces.
Possible examples are the impedance matrix localization (IML)
technique [17], the multilevel matrix decomposition algorithm
(MLMDA) [18], the fast multipole method (FMM) [19], or
techniques based on Krylov subspaces for nonlinear problems
[20]. We also have reduction techniques suitable for eigen-
value sparse problems based on Lanczos solvers [21], [22] or
derivations [23].

In general, the basic idea is that the whole problem or, equiv-
alently, its system matrix, can generally be decomposed into
blocks, with limited reciprocal interactions. This is quite ap-
parent, for instance, in the MLMDA case, where an immediate
physical flavor is given to this decomposition by referring to far-
and near-field interactions.

The idea proposed in this paper, described in the following
section, shares several common issues with the above-men-
tioned approaches. Nonetheless, we believe it can add a useful
contribution for the following reasons.

• It is very simple and general.
• It is easy to implement (not always a consequence of the

previous item).
• It shows good speed-ups and improves the system stability

As a consequence, the focus is not on its efficiency and effec-
tiveness with respect to previous techniques, but on its afford-
ability with very little programming efforts, without changing
the core of the electromagnetic formulation of the problem.

B. Simple Tutorial Examples

We first consider a very lucky and simple example, repre-
sented by the following system matrix:

(8)

In this case, it is quite apparent that, if we neglect all the en-
tries smaller than, for instance, 0.005, the linear system is im-
mediately decomposed into two independent systems of size 2,
as thethresholdedmatrix is

(9)

In this simple case, a single thresholding is enough to identify
two independent subproblems. Of course, this is not so typical.
Consider, for instance, the following system matrix:

(10)

Fig. 1. AG representation of matrix (11). One connecting point is identified.
If the corresponding entry in the matrix (â or, equivalently,̂a ) is neglected,
the graph is partitioned into two independent subgraphs.

where entries generally larger than 10, for the sake of sim-
plicity, are represented with. In this case, if we perform a
first thresholding, neglecting values smaller than ,
we are not able to identify any independent subproblems, as the
resulting system matrix is

(11)

It is now extremely useful to introduce the concept of AG.
Each row/column of the matrix is numbered and represented by
a node identified with the corresponding number. An arc con-
nects nodes and if and only if the entry in the matrix is
not a zero. The graph representation of matrix (11) is reported
in Fig. 1. The nodes in the figure are disposed so that it is ap-
parent that the graph is potentially partitionable into two sub-
graphs, provided that the entry (or, equivalently, ) is neg-
ligible. This entry is defined as aconnecting point. This is the
case, provided that a new thresholding action is performed, with

. Now, we actually have identified two independent
subproblems, corresponding to rows/columns 1, 7–9 and 2–6.

The former substantial advantage of AGs is that the identifi-
cation ofconnecting pointsis quite straightforward with simple
programs. In the simple case of matrix (11), their usefulness
is only slightly demonstrated because of the small size of the
problem. In real cases, a graph approach is the only viable
strategy. The latter advantage is that it can be performed in a
very efficient way by using some techniques for graph search
and management already developed by the authors and tested
on a wide range of numerical techniques for the analysis of
MW circuits and antennas [24], [25].

In real cases, it typically happens that many connecting points
are identified, each one corresponding to different values of
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thresholds. In such cases, an optimum tradeoff between perfor-
mance enhancements and approximation errors must be pursued
(the neglect of a number of matrix entries introduces some er-
rors). In the following section, a discussion on this issue is given
referring to a real complex case.

Once the problem has been partitioned into independent sub-
problems by using a certain threshold , the corresponding
submatrices can be determined. For instance, matrix (11) can be
partitioned into one submatrix composed of rows and columns
1, 7–9 and the other submatrix 2–6. Afterwards, for each subma-
trix, the described procedure can be repeated recursively, pro-
vided that the new thresholds (eventually different for each sub-
matrix) are larger than . This is why the whole strategy is
called AG–RT.

C. Remarks

A key point is the effect of the AG–RT procedure on the con-
dition number of the matrix. While it is quite intuitive that a
thresholding might improve the determinant, it is not so obvious
its action on the condition number, which is only loosely related
with the determinant [26]. An important feature of techniques
based on RT is that they improve the stability of the problem,
with a reduction of the convergence time when using iterative
solvers [27], [28]. This is guaranteed especially when the ma-
trix can be block diagonalized, as in our case, provided that the
above-mentioned graph techniques developed by the authors are
used [24].

At each iteration of the recursive procedure, the approxima-
tion error is increased. Moreover, the percentage reduction of
the problem size and the consequent reduction in the numerical
complexity of the system solution decreases. Generally, very
few recursive steps (fewer than five) are an appropriate choice
to achieve a good tradeoff between problem reduction and ap-
proximation error.

IV. RESULTS—APPLICATION TO A REAL CASE

We consider as a demonstration case a complex circuit, such
as the -plane-step filter of Fig. 2. Its system matrix
has size 1308 when the functional bases have a cardinality suit-
able to achieve an appropriate accuracy. Thematrix is 18%
sparse, having 30 386 nonzero entries, and its pattern is shown
in Fig. 3. Unfortunately, the condition number is very bad, so
that even very sophisticated system solvers are not able to cope
with it.

The problem can be solved by using the AG–RT approach.
A first thresholding step is performed, with . The
application of the AG identifies 38 connecting points, all corre-
sponding to the used. Consequently, the matrix in Fig. 3 is im-
mediately partitioned into 38 independent subsystems. One of
them has dimension 967 (we indicate this submatrix with),
and all the others are smaller than 90. Apart from the largest
subsystem, all the other subsystems have a quite good condition
number, with a determinant larger than 10and a condition
number smaller than 10 . Unluckily, the largest subsystem
is still ill conditioned and further manipulations are needed in
order to solve this relevant part of the problem.

Fig. 2. H- andE-plane view of the filter analyzed by applying the AG–RT
strategy.

Fig. 3. Zero-nonzero pattern of the GAM of the filter.

Fig. 4. Largest subsystem attained from the 1308 matrix via the AG–RT matrix
partitioning.

Now, a new thresholding and AG step is recursively per-
formed on the submatrix. In this case, a new threshold
value is selected, thanks to the identification
of many connecting points corresponding to this value and to
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Fig. 5. Scattering parameters for the studied filter, as obtained with two different approaches (the GAM and GSM approaches). The GAM approach has been
implemented by following the proposed AG–RT strategy. The dotted curve is for the GAM approach, the continuous curve is for the GSM approach.

the analysis of approximation errors reported in the following
subsection. With this choice, the submatrix of size 967 can
be partitioned into a large number of submatrices (more than
500). The largest subsystem has size 174 and is shown in
Fig. 4. The condition number of nearly all the subsystems is
quite good (smaller than 10). This finally allows the complete
solution of the problem, with a satisfactory degree of accuracy,
as reported in Table I and Fig. 5, where the results attained
by using the – approach are compared with
the ones attained with a generalized scattering matrix (GSM)
formulation. A two-step AG–RT strategy has been enough to
achieve a good tradeoff between accuracy and performance
(see Section IV-B). More generally, the strategy is stopped
in accordance with a flexible convergence criterion fixed by
the user (for instance, once a certain accuracy is reached or a
maximum number of iterations). It should also be pointed out
that, at each iteration, several connecting points are neglected
and the identification of an appropriateis important in order
to maximize their number.

A. Approximation Errors

The idea of using a thresholding on matrix entries is common
[29], [30] and has also been recently applied for the so-called
“wavelet-like” transforms [31]. In the case of a GAM formula-
tion, after several benchmarks on different circuits (rectangular
waveguide - and -plane steps, bends, and filters), the results
shown in Table I are attained. These results are rather similar to
other analyses, performed on planar structures analyzed with the
mixed-potential integral equation (MPIE)/method of moments
(MoM) [30].

From Table II, we observe that a reasonable tradeoff between
accuracy and effectiveness can be achieved by using values of

in the range 10 10 . The identification of a suitable
threshold after the matrix normalization is a crucial issue. At
the moment it is performed with ana priori phenomenological
approach, based on the error estimation for a set of possible
values. A deterministic procedure is currently under develop-
ment so that the optimum threshold can be evaluated from the
basic properties of the system matrix.

TABLE I
ERROR ONSCATTERING PARAMETERS OBSERVED FORDIFFERENT

CHOICES OF THETHRESHOLD

TABLE II
COMPUTING TIMES (IN SECONDS) AS REFERRED TO ANIBM RS6000 390.

DATA REFER TOBOTH THE USE OF ASPARSEITERATIVE SOLVER AND TO THE

USE OF THEPROPOSEDPARTITIONING STRATEGY IN CONJUNCTIONWITH A

BANDED SOLVER. BOTH ARE TAKEN FROM SLATEC LIBRARY

B. Achieved Speed-Ups

As previously stated, the original problem, of size 1308, has
been decomposed into nearly 550 subsystems, ranging from one
system of size 174 to many others of smaller size down to size
one. All the generated submatrices have a banded structure (see,
for example, Fig. 4). In the analyzed case, the application of
the AG–RT and the consequent problem decomposition, has al-
lowed the solution of an otherwise ill-conditioned problem.

Nonetheless, the AG–RT strategy is also useful when the con-
ditioning problem is not so severe, as it substantially enhances
the time performance of the GAM analysis. Let us consider, for
instance, a matrix of the same size, i.e., 1308, with the same
sparsity and pattern of the matrix of the circuit in Fig. 2, the
same decomposition via AG–RT and a better condition number
(for instance, 10). The computing time to solve the problem
using the AG–RT strategy is substantially reduced with respect
to the standard solution of the whole system. We have compared
the computing times using a standard sparse solver (SP) to solve
the 1308 system versus the strategy proposed here (AG–RT),
fragmenting the system and solving all the reduced-size banded
subsystems. In Table II, results are given on an IBM RS6000
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390. The AG–RT strategy computing time is composed of the
time needed to solve all the subsystems (145 s) plus the time
needed to fragment and arrange all data (21 s).

As easily noticed, the global speed-up is more than one order
of magnitude. The two main factors explaining this improve-
ment are: 1) the subsystems are independent and can be solved
concurrently, thus exploiting the multitasking characteristics of
nearly all the available computing platforms and 2) the numer-
ical complexity is substantially reduced: the use of direct banded
solvers instead of iterative sparse solvers is an advantage, when
the matrix size and bandwidth is suitably reduced.

V. CONCLUSIONS

In this paper, the introduction of a new strategy based on AGs
and RT of the GAM has been proposed. This combined appli-
cation allows to decompose the linear system matrix into inde-
pendent submatrices, of smaller dimension, improving the sta-
bility of each subsystem and significantly reducing the numer-
ical complexity of the linear system solution.

The implementation of such a strategy is suitable to turn the
GAM, which suffers from severe numerical instabilities when
using a very high number of modes, into a robust, efficient, and
accurate approach for the analysis of waveguide circuits. More-
over, the proposed strategy is general and can, in principle, be
applied to a number of different numerical techniques.

As an example, we have proven on a real industrial case that
the strategy is a good remedy to the problem of ill conditioning
and also allows the enhancement of the numerical efficiency
with respect to previous implementation.
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